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Abstract

The rapid movement of machines is a challenging control problem because it often results in high levels of vibration. As

a result, flexible machines are typically moved relatively slowly. Input shaping is a control method that allows much higher

speeds of motion by limiting vibration induced by the reference command. To design an input-shaping controller,

estimates of the system natural frequency and damping ratio are required. However, real world systems cannot be modeled

exactly, making the robustness to modeling errors an important consideration. Many robust input shapers have been

developed, but robust shapers typically have longer durations that slow the system response. This creates a compromise

between shaper robustness and rise time. This paper analyzes the compromise between rapidity of motion and shaper

robustness for several input-shaping methods. Experimental results from a portable bridge crane verify the theoretical

predictions.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The control of flexible machines is an enormous area of research because all machines will exhibit flexibility
when pushed to their performance limits. Much of the work in this area has concentrated on feedback control
methods. However, feedback systems can be expensive and difficult to implement, as they require the system
to be equipped with sensors. Furthermore, they can require significant computing power and raise the
possibility of unstable system behavior. Command shaping methods typically do not have these issues, but
they are susceptible to disturbances if they are not used in conjunction with feedback control.

Input shaping reduces vibration by intelligently shaping the reference signal such that the vibratory modes
of the system are canceled. To implement this method, the reference signal is convolved with a sequence of
impulses, called an input shaper. This process is demonstrated in Fig. 1. The timing and amplitudes of the
impulses are determined using estimates of the system frequencies and damping. Note that the rise time of the
command is lengthened by the duration of the shaper. In general, the rise time of the input-shaped system will
closely track the command rise time, so minimizing the shaper duration is important for achieving high-speed
motion.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. The input-shaping process, – – command, – response.
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While input-shaping methods were first proposed in the 1950s [1–3], the early work was difficult to
implement without digital computers. Furthermore, it was sensitive to modeling errors [4]. These early shapers
were formed using constraints that limited the residual vibration of the system to zero at the modeled natural
frequency and damping ratio. As a result, they are typically referred to as zero vibration (ZV) shapers.
1.1. Input-shaping constraint equations

In order to determine the impulse amplitudes and time locations of an input shaper, the designer must
ensure that they satisfy certain design constraints. The primary design constraint is a limit on the amplitude of
vibration caused by the shaper. The vibration amplitude of an underdamped, second-order system from a
sequence of n impulses is

AP ¼ offiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p e�zotn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Aiezoti cosðoti

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
Þ

 !2

þ
Xn

i¼1

Aiezoti sinðoti

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
Þ

 !2
vuut , (1)

where o is the natural frequency of the system, z is the damping ratio, and Ai and ti are the ith impulse
amplitude and time, respectively.

To form a nondimensional vibration amplitude, Eq. (1) is divided by the amplitude of residual vibration
from a single impulse of unity magnitude. The resulting expression gives the ratio of vibration with input
shaping to that without input shaping. The amplitude of residual vibration from a single unity-magnitude
impulse applied at time zero is simply

A" ¼
offiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p . (2)

Dividing Eq. (1) by Eq. (2) yields the percentage residual vibration (PRV) [5]:

PRV ¼ V ðo; zÞ ¼
AP
A"
¼ e�zotn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Cðo; zÞ�2 þ ½Sðo; zÞ�2

q
, (3)

where

Cðo; zÞ ¼
Xn

i¼1

Aie
zoti cosðoti

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
Þ, (4)

Sðo; zÞ ¼
Xn

i¼1

Aie
zoti sinðoti

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
Þ. (5)

Eq. (3) represents the level of vibration induced by an impulse sequence given any value of frequency and any
damping ratio less than one. A constraint on residual vibration amplitude can be formed by setting Eq. (3) less
than or equal to a tolerable level of residual vibration at the modeled natural frequency and damping ratio.



ARTICLE IN PRESS

0

5

10

15

20

25

30

0.7 0.8 0.9 1 1.1 1.2 1.3

P
er

ce
nt

ag
e 

V
ib

ra
ti

on
 (

P
R

V
)

Normalized Frequency (ω /ωm)

Vtol

0.06

0.29

0.40

Fig. 2. Sensitivity curves for zero vibration, zero vibration and derivative, and extra insensitive shapers, – zero vibration, – – zero

vibration and derivative, – � – extra insensitive.
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For the ZV shaper, the tolerable amount of vibration is set to zero. This results in a shaper of the form

ZV ¼
Ai

ti

" #
¼

1

1þ K

K

1þ K

0
td

2

2
664

3
775, (6)

where td is the damped vibration period and

K ¼ e�zp=
ffiffiffiffiffiffiffiffi
1�z2
p

. (7)

As will be shown in Section 2, additional constraints can be placed on input shapers to ensure robustness to
modeling error [6–12].
1.2. Sensitivity curves and insensitivity

Most measures of input-shaping robustness focus on the sensitivity curve of the input shaper. The natural
frequency sensitivity curve for a ZV shaper is shown by the solid line in Fig. 2. The vertical axis is the percent
residual vibration (PRV) and the horizontal axis is the actual natural frequency, o, normalized by the modeled
frequency, om. The curve indicates how residual vibration changes as a function of modeling errors in
frequency. While a sensitivity curve itself is not a measure of robustness, a qualitative picture of the robustness
of a command can be obtained from it and quantitative measures can be extracted from it. The various input
shapers produce different sensitivity curves because the impulses that comprise the shapers have different
amplitudes and time locations.

One key measure of robustness derived from the sensitivity curve is insensitivity [12,8]. Insensitivity is the
width of the sensitivity curve at a tolerable vibration level, V tol, with respect to the parameter of interest. For
example, Fig. 2 shows the ZV shaper has an insensitivity at V tol ¼ 5 percent, Ið5 percentÞ, of 0.06. One
drawback with this measure is that it can provide misleading results if applied without common sense. For
example, if a sensitivity curve has peaks within the considered range (like the one labeled extra insensitive in
Fig. 2), then an automated calculation of insensitivity may be misleading. Consider the case when the peak
occurs at 5.1 percent instead of 5 percent. The calculated 5 percent insensitivity width will be zero and falsely
indicate that the shaper is not robust. Of course, from a common sense perspective, the robustness is
essentially the same if the peak in the sensitivity curve occurs at 5.1 or 5.0 percent.
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The large robustness (width of frequency suppression range) provided by both the zero vibration
and derivative (ZVD) and extra insensitive (EI) shapers shown in Fig. 2 does not come without cost. Each
of these robust shapers (both of which are discussed in Section 2) is longer than the relatively non-robust
ZV shaper. This trend continues across all robust shaping methods. In the next section, four robust input-
shaping methods will be briefly explained and their sensitivity curves shown. Next, comparisons of robustness
and shaper duration are made between methods. Then, experimental results supporting this comparison
are presented. The main purpose of these comparisons is to present a clear and concise picture of
the compromise between shaper duration and robustness, as well as provide a useful comparison of various
robust shapers.
2. Robust shaping details

In real applications, the system parameters needed to form the input shaper are not known exactly. This
makes modeling system parameters to within the tolerances needed for ZV shapers difficult. This challenge
inspired the development of robust shapers. Numerous robust shapers have been proposed, including input
shapers specifically designed to address system nonlinearities such as friction and nonlinear system dynamics
[13–16]. The methods used to develop robust shapers fall loosely into four categories: derivative methods,
tolerable vibration limit methods, ad hoc methods (e.g. MIS methods discussed in this paper), and numerical
optimization methods. For all robust shapers, a compromise must be made between an increase in robustness
and the related increase in shaper duration. However, the robustness for a given shaper duration will differ
between design methods. Section 3 will evaluate the performance of robust input shapers in terms of this
tradeoff.
2.1. Derivative methods

The earliest form of robust input shaping was achieved by setting the derivative, with respect to the
frequency, of the residual vibration equation (3) equal to zero [6]:

q
qo
ðe�zotn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Cðo; zÞ�2 þ ½Sðo; zÞ�2

q
Þ ¼ 0. (8)

The resulting shaper is called a zero vibration and derivative (ZVD) shaper. It is described by

ZVD ¼
Ai

ti

" #
¼

1

1þ 2K þ K2

2K

1þ 2K þ K2

K2

1þ 2K þ K2

0
td

2
td

2
664

3
775. (9)

Note that the duration of this shaper, t3 ¼ td , is twice that of the ZV shaper, t2 ¼ td=2.
The ZVD shaper sensitivity curve, shown in Fig. 2, has an Ið5 percentÞ of approximately 0.29. The zero

derivative constraint flattens the sensitivity curve at the modeled frequency and increases the insensitivity. To
further increase insensitivity, this process can be repeated by taking additional, higher-order derivatives, with
respect to frequency. The price for each additional derivative, however, is an increase in shaper duration by
one-half period of the natural frequency. The next two derivative-method shapers, the zero vibration and
double derivative (ZVDD) and zero vibration and triple derivative (ZVDDD), are described by

ZVDD ¼
Ai

ti

" #
¼

1

1þ 3K þ 3K2 þ K3

3K

1þ 3K þ 3K2 þ K3

3K2

1þ 3K þ 3K2 þ K3

K3

1þ 3K þ 3K2 þ K3

0
td

2
td

3

2
td

2
6664

3
7775

(10)
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Fig. 3. Sensitivity curves for derivative-method shapers, – zero vibration, – � – zero vibration and derivative, . . . zero vibration and double

derivative, – – zero vibration and triple derivative.
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and

ZVDDD ¼
Ai

ti

" #
¼

1

D

4K

D

6K2

D

4K3

D

K4

D

0
td

2
td

3

2
td 2td

2
664

3
775, (11)

where D ¼ 1þ 4K þ 6K2 þ 4K3 þ K4. Their sensitivity curves are shown in Fig. 3. The additional
insensitivity gained from each higher-order derivative is evident in the plot.
2.2. Tolerable vibration methods

To this point, the shapers discussed have been formed using a constraint that there be zero residual
vibration at the modeled frequency. However, even in real world systems for which a good model exists,
there will be some modeling error and vibration will occur at the design frequency. Realizing this, the
designer should relax this constraint to one in which residual vibration remains below some tolerable level,
V tol, at the modeled frequency [8,12]. The first shaper utilizing this idea was called the extra insensitive (EI)
shaper. It has a sensitivity curve like the one shown in Fig. 2. The EI shaper has the same impulse times as the
ZVD shaper but has different amplitude values that lead to greater robustness. For undamped systems, it has
the form [8]

EI ¼
Ai

ti

" #
¼

1þ V tol

4

1� V tol

2

1þ V tol

4

0
t
2

t

2
664

3
775, (12)

where V tol is the tolerable level of vibration (e.g. 5 percent ¼ 0:05) and t is the undamped vibration period of
the system. For a system with viscous damping, the EI shaper is described by

EI ¼
Ai

ti

" #
¼

A1 1� ðA1 þ A3Þ A3

0 t2 td

" #
, (13)
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Fig. 4. Sensitivity curves for extra insensitive method shapers, – zero vibration, – � – extra insensitive, . . . two-hump extra insensitive, – –

three-hump extra insensitive.
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where

A1 ¼ 0:24968þ 0:24962V tol þ 0:80008zþ 1:23328V tolzþ 0:49599z2 þ 3:17316V tolz
2, (14)

A3 ¼ 0:25149þ 0:21474V tol � 0:83249zþ 1:41498V tolzþ 0:85181z2 � 4:90094V tolz
2, (15)

and

t2 ¼
1

2p

o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
0:49990þ 0:46159V tolzþ 4:26169V tolz

2
þ 1:75601V tolz

3
þ � � �

þ8:57843V2
tolz� 108:644V2

tolz
2
þ 336:989V2

tolz
3

 !
. (16)

Note that the EI is the same duration as the ZVD shaper, but has much more insensitivity, as demonstrated
in Fig. 2.

Shapers that extend this idea have a progressively larger number of humps and are called multi-hump EI
shapers [17]. The sensitivity curves for two-hump EI and three-hump EI shapers are shown in Fig. 4. Note that
the three-hump EI suppresses vibration over the entire range shown. As with the derivative-method shapers,
the price for increased robustness is a corresponding increase in shaper duration. Note, however, that the
penalty is not uniform across all shapers. The two-hump EI has the same duration as the ZVDD, and the
three-hump EI and ZVDDD have the same durations. However, the EI shapers have much more robustness,
as can be seen by comparing Figs. 3 and 4. This tradeoff will be further discussed in Section 3. For undamped
systems, the two-hump EI is described by [17]

two-hump EI ¼
Ai

ti

" #
¼

A12H

1

2
� A1 A2 A1

0 0:5t t 1:5t

2
4

3
5, (17)

where

A1 � A12H ¼
3X 2 þ 2X þ 3V2

tol

16X
, (18)

and

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

tolð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

tol

q
þ 1Þ

3

r
. (19)
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Table 1

Multi-hump EI shapers for V tol ¼ 5 percent

ti ¼ ðM0 þM1zþM2z2 þM3z3Þt; t ¼
2p
o

Ai ¼M0 þM1zþM2z2 þM3z3

Shaper M0 M1 M2 M3

Two-hump EI t2 0.49890 0.16270 �0.54262 6.16180

t3 0.99748 0.18382 �1.58270 8.17120

t4 1.49920 �0.09297 �0.28338 1.85710

A1 0.16054 0.76699 2.26560 �1.22750

A2 0.33911 0.45081 �2.58080 1.73650

A3 0.34089 �0.61533 �0.68765 0.42261

A4 0.15997 �0.60246 1.00280 �0.93145

Three-hump EI t2 0.49974 0.23834 0.44559 12.4720

t3 0.99849 0.29808 �2.36460 23.3990

t4 1.49870 0.10306 �2.01390 17.0320

t5 1.99960 �0.28231 0.61536 5.40450

A1 0.11275 0.76632 3.29160 �1.44380

A2 0.23698 0.61164 �2.57850 4.85220

A3 0.30008 �0.19062 �2.14560 0.13744

A4 0.23775 �0.73297 0.46885 �2.08650

A5 0.11244 �0.45439 0.96382 �1.46000
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The undamped, three-hump EI shaper is described by [17]

three-hump EI ¼
Ai

ti

" #
¼

A13H

ð1� V tolÞ

4
1� 2ðA1 þ A2Þ A2 A1

0 0:5t t 1:5t 2t

2
4

3
5, (20)

where

A1 � A13H ¼
1þ 3V tol þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V tolðV tol þ 1Þ

p
16

. (21)

The amplitudes and time locations for the damped two-hump EI (V tol ¼ 5 percent) shaper and the three-
hump EI (V tol ¼ 5 percent) shaper are given in Table 1 as a function of system damping. The curve fits for the
two-hump EI shaper have maximum errors in the impulse times and amplitudes of less than 0.5 percent over
the range 0pzp0:3. The curve fits for the three-hump EI shaper are accurate to within 0.4 percent over the
range 0pzp0:2.

2.3. Specified insensitivity methods

It is desirable to tailor the robustness of a shaper to the specific system for which it is being designed. The
specified insensitivity (SI) shaper does this by generating constraint equations to match the desired level of
robustness [10]. An SI shaper can be generated for any desired level of insensitivity in one of two ways. The
first is an approximation method in which the vibration is limited to below some tolerable level at several
points over the range of parameters desired. Shaper impulse amplitudes and times are then generated using
optimization routines. In practice, a small number of points can be used to effectively suppress vibration over
a wide range of parameters. The second procedure is more complicated and more difficult to implement but it
obtains exact solutions [10].

SI shapers provide the greatest level of robustness for any given shaper duration, a point that will be further
discussed in Section 3. Another advantage of SI shapers is that they can be designed to have non-symmetric
sensitivity curves, such that the shaper is more robust to increases in frequency than decreases, or vice versa.
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SI shapers can also be designed for any level of tolerable vibration. The sensitivity curves for three SI shapers
are shown in Fig. 5, including one designed to have an insensitivity of 0.7 for V tol ¼ 10 percent
(Ið10 percentÞ ¼ 0:7) and one with a non-symmetric insensitivity region (SI (I low ¼ 0:1; Ihigh ¼ 0:5Þ). The
non-symmetric SI shaper was designed to be five times more robust to increases in natural frequency than
decreases. Its total insensitivity is 0:6, but 0:5 of this lies above the design frequency.

One disadvantage of the SI shaper is that an optimization is required to solve for the impulse amplitudes
and time locations. All other shapers discussed in this paper exist in closed form. This disadvantage, however,
is a minor inconvenience. Any number of commonly available software packages can perform the relatively
easy optimization.
2.4. MIS methods

A modified input-shaping (MIS) technique has been proposed that relaxes the constraint requiring the use
of the minimum number of impulses [18]. This technique forms MISZV shapers that have zero vibration at the
modeled frequency, but have a larger number of impulses and a longer shaper duration than the ZV shaper
(which results from limiting the MISZV shaper to two impulses). An N-impulse MISZV shaper is described by

N-impulse MISZV ¼
Ai

ti

" #
¼

1

1þM

Km

1þM
. . .

Ki�1
m

1þM

KN�1
m

1þM

0
td

N
. . .

ði � 1Þtd

N

ðN � 1Þtd

N

2
664

3
775, (22)

where Km ¼ e�2zp=N
ffiffiffiffiffiffiffiffi
1�z2
p

(note this is slightly different than the previous K), M ¼ Km þ � � � þ Ki�1
m þ KN�1

m ,
and td ¼ 2p=o

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
. The sensitivity plots for two- through five-impulse MISZV shapers are shown in

Fig. 6. One can see that the additional impulses only provide a minimal increase in shaper insensitivity.
Zero-derivative MIS (MISZVD) shapers are formed by convolving two MISZV shapers designed for the

same frequency. The resulting MISZVD shaper is indicated by the number of impulses of each of the MISZV
shapers used to create it. An N �M-impulse MISZVD is formed by convolving an MISZV shaper containing
N impulses with an MISZV shaper with M impulses. Convolving MISZV shapers of higher number of
impulses results in more robust MISZVD shapers, at the cost of increased shaper duration. It should be noted
that a 2� 2-impulse MISZVD shaper is the traditional ZVD shaper. The sensitivity plots for various
MISZVD shapers are shown in Fig. 7.
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3. Shaper insensitivity versus shaper duration

For each method of generating robust input shapers, the shaper duration has increased with insensitivity.
The insensitivity for a given shaper duration, however, differs between design methods, indicating the need to
thoroughly understand the insensitivity/duration tradeoff between the various shaping methods. To ensure
that this analysis is system independent, the shaper duration is normalized by the damped natural period of
the system. A shaper with a duration equal to the modeled damped natural period, like the ZVD and EI
shapers, has a normalized duration of one.

Fig. 8 shows the 5 percent insensitivity, Ið5 percentÞ, defined in Section 1.2, of various shapers as a function
of normalized shaper duration. The SI shaper is plotted as a line, because it can be designed to have any
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Fig. 9. Efficiency of insensitivity, ’Ið5 percentÞ=Ts, & Ið10 percentÞ=Ts.
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desired level of insensitivity. To generate the line, SI shapers were designed for Ið5 percentÞ over the range of
parameters shown in the plot, for Ið5 percentÞ ¼ 0:02–0.970 at 0.005 increments. The SI shaper has the
minimum duration for any given insensitivity. Therefore, SI shapers will provide the fastest rise time. Other
shapers discussed in this paper are also shown on the plot. One point of interest is that the EI shapers
correspond to nodes on the SI shaper curve. This indicates that they offer the optimal insensitivity for a given
shaper duration. It is also of interest to note that both the derivative and MIS methods yield shapers that
provide substantially less insensitivity than EI and SI shapers.

In order to further quantify the compromise between insensitivity and shaper duration, the efficiency of

insensitivity is introduced. The efficiency of insensitivity is the insensitivity of a shaper divided by its
normalized duration. Higher numbers indicate that a shaper achieves its robustness more efficiently, in terms
of shaper duration. The efficiency of insensitivity for 5 and 10 percent vibration tolerance levels is shown in
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Fig. 9. The shapers are sorted from left to right in terms of increasing efficiency of insensitivity for
V tol ¼ 5 percent.

As seen in Fig. 9, all ZV method shapers, including the MISZV shapers with additional impulses, exhibit a
low efficiency of insensitivity for V tol ¼ 5 percent. The efficiency values range between 0.1228 for the four-
impulse MISZV and 0.1296 for the ZV. Similar trends exist when V tol ¼ 10 percent. This indicates that of the
shapers with low robustness, the ZV shaper achieves its insensitivity most efficiently.

The evaluation of the efficiency of insensitivity for derivative (ZVD) and MISZVD shapers follows the same
trend as the ZV method shapers. For V tol ¼ 5 percent, the efficiency of insensitivity of derivative (ZVD)
method shapers is greater than that of MISZVD shapers of comparable duration. A similar trend exists when
V tol ¼ 10 percent.

An obvious result from Fig. 9 is that the SI and EI shapers, which offer optimal insensitivity for a given
shaper duration, also provide the highest efficiency of insensitivity, as would be expected. This provides strong
evidence that these shapers should be used whenever possible.

4. Robustness to errors in damping

To this point, only robustness to errors in natural frequency has been discussed. Input shaper robustness to
errors in damping follows very similar trends. One difference between the frequency sensitivity plots and the
damping ratio plots is that the damping ratio is not normalized. This is because when the modeled damping
ratio, z, is near zero, small changes in the actual damping ratio, zact, result in large changes in the normalized
damping ratio, z=zact. Therefore, insignificant changes in system dynamics, say between zact ¼ 0:001 and 0.002,
show up as large changes in the normalized damping ratio.

The damping sensitivity curves for the ZV and MISZV shapers designed for a damping ratio of 0.1 are
shown in Fig. 10. One can see that the ZV and MISZV shapers, which are relatively non-robust to errors in
natural frequency, are also relatively non-robust to errors in damping. This trend continues across all shaping
methods; robustness to errors in natural frequency generally translates into robustness to errors in damping.
This is seen in the plots of the sensitivity of the derivative-method shapers (including MISZVD) in Fig. 11.
Notice that the derivative methods have zero slope at the modeled damping ratio and provide a dramatic
reduction in vibration for all values of damping shown.

The damping ratio sensitivity curves for the EI-method shapers are shown in Fig. 12. Above damping ratios
of approximately 0.175, the vibration levels are lower for longer shaper durations (and higher hump numbers),
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similar to the trends seen in the natural frequency sensitivity plots. However, below 0.175 the level of vibration
cannot be predicted solely by shaper duration. Notice that the EI shapers suppress vibration over nearly the
entire range of damping ratios shown in the plot. The EI-method shapers in Fig. 12 were designed for a
V tol ¼ 3 percent, using Eq. (13) and the formulas from Table 1. This illustrates the flexibility of the EI-method
shapers to design for differing tolerable vibration limits. It is also illustrative of the steps that a designer should
take when designing EI-method shapers for systems with dramatically varying damping ratios. One can see
from Eqs. (13) and (16) that choosing a lower V tol has very little effect on shaper duration; there is little
negative consequence to this choice.

The SI shaper, which was discussed with respect to errors in natural frequency in Section 2.3, can also be
designed to have an specified insensitivity to damping. Additionally, insensitivity to errors in damping and
frequency can be designed into the same SI shaper. This is done in a manner similar to that discussed in
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Section 2.3, by limiting the vibration to below V tol at points within the ðo; zÞ parameter space. Fig. 13 shows a
three-dimensional sensitivity curve for an SI shaper that was designed to suppress vibration between 0.7 and
1.3Hz and also over the range of damping ratios between 0 and 0.2.
5. Experimental comparison of robust shapers

To this point, all results presented have been theoretical. To rigorously test the various shaping methods,
representative shapers from each method were experimentally evaluated using the portable bridge crane
shown in Fig. 14. The portable bridge crane has a workspace of approximately 1m� 1m� 1:6m. The
overhead bridge and trolley are driven using Siemens synchronous AC servo motors attached to timing belts
that provide motion in the x and y directions. The motors are controlled using a Siemens PLC using
proportional-plus-integral (PI) control with feedback from motor-mounted encoders. The crane is also
equipped with a vision system to track payload position.
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Input shapers were designed for a system natural frequency of 0.74Hz and zero damping, corresponding to
a suspension length of approximately 0.46m (18 in). Seven shapers were tested: ZV, ZVD, EI, two-hump EI,
four-impulse MISZV, 2� 3 MISZVD, and an SI shaper designed with Ið5 percentÞ ¼ 0:5.

The vibration amplitudes for unshaped point-to-point move of approximately 0.6m is shown in Fig. 15. The
vibration amplitude is plotted on the vertical axis. Along the horizontal axis, the different natural frequencies
resulting from varying the payload suspension cable length are normalized by the shaper design frequency.
The points in this figure and the remaining figures in this paper are averages of three trials. The error bars
represent one standard deviation above and below the average value. Average vibration amplitude for
unshaped moves varied between 4� and 23� as the suspension length was changed. Also shown in Fig. 15 is the
vibration amplitudes for ZV- and SI-shaped motions over the same move distance as the unshaped case. One
can see that both the ZV- and SI-shaped vibration amplitudes remained much smaller than the unshaped
motion over the entire range of suspension lengths. Even the relatively non-robust ZV shaper greatly reduced
the level of vibration over the entire range of cable lengths tested.

The theoretical and experimental sensitivity curves for the ZV shaper are shown in Fig. 16. One can see that
the experimental results closely match those predicted by theory. There are more data points at lower
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normalized frequencies due to the nature of the experimental setup. To achieve higher natural frequencies the
suspension cable must be shortened. Shortening this cable toward its minimum length makes it impossible for
the vision system to track the system response because the payload swings out of the camera’s field of view. No
such problem exists for longer suspension cable lengths, which result in frequencies lower than the shaper
design frequency.

The experimental sensitivity curve for the ZVD shaper is shown in Fig. 17. It too closely matches the
predicted behavior; however, even at the modeled frequency the percentage residual vibration is very near the
5 percent V tol level. This corresponds to the noise level in payload swing and camera measurements. This
result is not very troubling because even 10 percent vibration is very small—after all, that is a 90 percent
reduction in vibration from the unshaped case. It does, however, provide further support for the use of
tolerable vibration methods, because zero vibration cannot be achieved in practice.

Figs. 18 and 19 show the experimental and theoretical sensitivity curves for the four-impulse MISZV and
2� 3-impulse MISZVD shapers. For each, the experimental results closely follow the theoretical. As with the
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ZV and ZVD shapers, the vibration never reaches the theoretical minimum of zero. The 2� 3-impulse
MISZVD, however, exhibits good robustness to modeling errors in natural frequency, remaining below the
V tol over a large range of suspension lengths.

The results for the EI and two-hump EI shapers are shown in Figs. 20 and 21, respectively. Again, the
experimental behavior closely follows the theoretical predictions. The two-hump EI shaper provides great
reduction in vibration levels over the entire range of suspension lengths, remaining below or only slightly
larger than V tol over nearly the entire range. Note that the two-hump EI provides robustness over such a wide
range that the experimental setup cannot be changed enough to cause any significant vibration.

The experimental sensitivity curve for an SI shaper designed for an Ið5 percentÞ ¼ 0:5 is shown in Fig. 22.
Like the two-hump EI shaper, vibration is substantially reduced over nearly the entire range of cable lengths.
For both the two-hump EI and SI shapers, only extreme changes in cable lengths resulted in vibration levels
much greater than V tol. For all shapers, it is important to note that deviation from theory usually occurs such
that the actual percentage vibration is slightly larger than predicted by theory. This further reinforces the
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necessity of including robustness in the shaper design process and suggests that, where applicable, V tol should
be set slightly low during the shaper design process to ensure that actual system performance meets the desired
vibration tolerances.

A bar graph containing the theoretical and experimental efficiency of insensitivity is shown in Fig. 23. To
calculate the experimental efficiency of insensitivity, points within the suppression range of the shaper but
slightly over the tolerable amount of vibration were still considered to be suppressed. For all cases, twice the
width between the design frequency and the lowest frequency that was suppressed by the shaper was used as a
measure of the insensitivity. This practice is consistent with the common sense application of the insensitivity
criterion and with the accepted measurement of insensitivity for experimental results. One can see that the
experimentally measured efficiency of insensitivities closely match those predicted by the theory, but generally
have slightly lower values. The close agreement is expected, considering how closely the experimental
sensitivity curves in Figs. 16–22 matched the theoretical. It is also to be expected that the experimental values
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are slightly lower than the theoretical values. This is a function of the payload oscillation generally being
slightly larger than predicted by theory, as seen in Figs. 16–22.

6. Conclusions

Many robust shaping methods have been proposed. Within each shaping method, increased robustness
comes at the expense of increased shaper duration and, as a result, slower system rise time. However, different
shaper design methods provide robustness with differing efficiency. This paper presented an analysis of input-
shaping methods based upon a new performance measure for input shapers, the efficiency of insensitivity.
Using this measure, in conjunction with other shaper performance measures, it was shown that EI and SI
shapers most efficiently provide robustness to modeling errors and parameter uncertainty. Hundreds of
experimental trials on a portable bridge crane verified the theoretical predictions.
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